158 research outputs found

    On the convergence of the usual perturbative expansions

    Get PDF
    The study of the convergence of power series expansions of energy eigenvalues for anharmonic oscillators in quantum mechanics differs from general understanding, in the case of quasi-exactly solvable potentials. They provide examples of expansions with finite radius and suggest techniques useful to analyze more generic potentials.Comment: 11 pages, Latex (1 EPS figure included

    Dilatation operator and Cayley graphs

    Full text link
    We use the algebraic definition of the Dilatation operator provided by Minahan, Zarembo, Beisert, Kristijansen, Staudacher, proper for single trace products of scalar fields, at leading order in the large-N 't Hooft limit to develop a new approach to the evaluation of the spectrum of the Dilatation operator. We discover a vast number of exact sequences of eigenstates.Comment: 30 pages and 3 eps figures, v2: few typos correcte

    Quartic Anharmonic Oscillator and Random Matrix Theory

    Get PDF
    In this paper the relationship between the problem of constructing the ground state energy for the quantum quartic oscillator and the problem of computing mean eigenvalue of large positively definite random hermitean matrices is established. This relationship enables one to present several more or less closed expressions for the oscillator energy. One of such expressions is given in the form of simple recurrence relations derived by means of the method of orthogonal polynomials which is one of the basic tools in the theory of random matrices.Comment: 12 pages in Late

    Non-universality of compact support probability distributions in random matrix theory

    Get PDF
    The two-point resolvent is calculated in the large-n limit for the generalized fixed and bounded trace ensembles. It is shown to disagree with that of the canonical Gaussian ensemble by a nonuniversal part that is given explicitly for all monomial potentials V(M)=M2p. Moreover, we prove that for the generalized fixed and bounded trace ensemble all k-point resolvents agree in the large-n limit, despite their nonuniversality

    Photonic gaps in cholesteric elastomers under deformation

    Full text link
    Cholesteric liquid crystal elastomers have interesting and potentially very useful photonic properties. In an ideal monodomain configuration of these materials, one finds a Bragg-reflection of light in a narrow wavelength range and a particular circular polarization. This is due to the periodic structure of the material along one dimension. In many practical cases, the cholesteric rubber possesses a sufficient degree of quenched disorder, which makes the selective reflection broadband. We investigate experimentally the problem of how the transmittance of light is affected by mechanical deformation of the elastomer, and the relation to changes in liquid crystalline structure. We explore a series of samples which have been synthesized with photonic stop-gaps across the visible range. This allows us to compare results with detailed theoretical predictions regarding the evolution of stop-gaps in cholesteric elastomers

    Real symmetric random matrices and paths counting

    Full text link
    Exact evaluation of is here performed for real symmetric matrices SS of arbitrary order nn, up to some integer pp, where the matrix entries are independent identically distributed random variables, with an arbitrary probability distribution. These expectations are polynomials in the moments of the matrix entries ; they provide useful information on the spectral density of the ensemble in the large nn limit. They also are a straightforward tool to examine a variety of rescalings of the entries in the large nn limit.Comment: 23 pages, 10 figures, revised pape
    • …
    corecore